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the relationship Biy = f(Foy} is unusual for relatively
"thin® bodies (Fig. 4). In this case, an extremum is
present on the curve Bij = f(Fo;), whose position shifts
toward larger Fo, as the dimension of the interacting
plates increases. This feature is due to ¢ and, con-
sequently to, Biy. It is apparently explained by "re-
flection™ of the thermal fluxes from an insulated sur-
face of the plate. This effect becomes particularly
noticeable for thin plates, as well as for plates with
high thermal conductivity.

On the whole the weak dependence of the Biot num-
ber on time in almost the entire range of the thermal
stabilization process is notable. Despite the fact that
strong radiative interaction is clearly defined in the
initial stage of thermal stabilization (see Fig. 2), the
kinetics of change in the Biot number are in the nature
of a sluggish and prolonged process. Here, the rate of
decrease in Bi; is less in the initial stage than in the
later stage.

The above discussion explains to a certain degree
why the widely used quasi~stationary methods of cal-
culating nonstationary heat transfer result in satisfac-
tory agreement with experiment.

At the same time the preliminary results presented
above provide a basis for performing more detailed
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determinations of o(t) when there is a distinct thermal
interaction.

NOTATION

ai denotes the thermal diffusivity coefficients; 7 is
the time; E; denotes the resulting radiation densities,
i= 1, 2; gyy = 0y are the resulting emissivities of the
plate; A; denotes the thermal-conductivity coefficients
for the plate; Ry denotes the plate thickness; T; is the
initial plate temperature; £ is a dimensionless co-
ordinate; 6; is the dimensionless temperature; (1) is
the dimensionless resulting radiation density; Fo; =
= (Ai/cipi)(7/R? is the Fourier number; Bi; = aiRi/A
is the Biot number.
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The temperature distribution is indicated through directly measurable
values from consideration of convection equations for the steady-state
process, The impossibility of stabilization of the interface when the
extraction rate changes is shown,

A. V. Stepanov has proposed a method for producing
articles directly from a melt [1].

Various articles made from a number of materials
are now being produced with this method [2, 3]. Which
basically is as follows. The melt column is given the
desired shape (see figure), and finished article is
obtained by crystallization of the column. The impor-
tance of calculation of the position of the crystalliza-
tion front is obvious here. This problem is also of
interest for the Czochralski method.

The thermal conditions of the process for a speci-
fied transition-boundary position are calculated in
this article in an approximation of a one-dimensional
thermal problem with convection.

The cooling schemes can vary [3]. We assume that
heat transfer occurs only due to internal thermal con-
ductivity. The coordinate system is showninthe figure.

We ignore change in the physical characteristics of
the material on either side of the phase interface.
The equations of the problem are [4]
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The simplest case of the stabilization problem
consists, with steady-state extraction and therefore
with a fixed interface, of maintaining the position of
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the boundary by proper selection of the temperature
in the cooling zone when the extraction rate varies.

However, it is easy to see that this requirement is

not feasible in such a rigid form.
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Diagram of production from a melt.

Let us make the substitution 43 = 85 — Ty, y = x — X.
By the substitution
LY

. 1 u?
ﬁé:exp( 2x—ﬁt> s(x, t)

2a

we transform Eq. (2) into the heat-conduction equation
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(uy is the new extraction rate) with the additional con-
ditions

ds

S(y) t)ly:() :0? 5‘ = ‘P(t)

y=0

Here y(t) is a certain known function that increases in
t not more rapidly than exp (u}t/4a?). The initial con-
ditions are unimportant for us now, and we let s(x,0)=
=0.

We write the Laplace-transform equation for s(x,t)

d?s I
P —— = 0,
3y ps

With our boundary condition, its solution will be

5= (p) shya Vp.

INZHENERNO-FIZICHESKII ZHURNAL

Inasmuch as §(p) does not approach zero as |p| — o,
we see that for s(p) a preimage which increases less
rapidly than exp(u}t/4a®) does not exist.

Therefore, rigid stabilization is impossible. This
result indicates the appropriateness of our introduc~
ing, for stabilization purposes, feedback between the
temperature in the cooling zone and the interface posi-
tion.

The temperature distribution in the steady state
as a function of the interface position is given by the
equations
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with boundary conditivos (3), (4), and dX/dt = 0. The
result from solution of these equations is
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As is apparent, the latter equation relates the melt
temperature, as well as the height and temperature
of the crystallization front, to the temperature of any
point in the solid phase up to the cooling zone.

A preliminary check of the applicability of this
equation was made for extraction with forced air cool-
ing of a strip of technical-grade pure aluminum. The
temperature at the base of the melt column and in the

aVp
Result of Experimental Check of Formula (6)
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crystallization zone was measured with a microthermo-
couple. Then the thermocouple was frozen into the
strip and the temperature distribution of the solid phase
during crystallization was recorded. Measurement of
the phase~transition temperature is necessary, due to
the presence of supercooling, whichdiffers for various
crystallization rates.

The results are given in the table.

We note that Eq. (6) canbeusedto determine super-
cooling, and this is of considerable interest.

NOTATION

u is the extractionrate; Ty, is the melt temperature;
Ty is the phase-transition temperature; 4, is the liquid
phase temperature; 4, is the solid phase temperature,
X is the interface coordinate; K is the thermal con-
ductivity coefficient; @® is the thermal diffusivity coef-
ficient; L is the specific heat of fusion; p is the den~
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g8ity; Xcgle is the calculated value of the interface
coordinate; Xmeag 18 the measured value of the in-
terface coordinate.
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The nonequilibrium-thermodynamics method is used to examine the

kinetics of the liquid-vapor phase tramsition of a pure substance, It is
shown that there is a sharp increase in the pressure-relaxation time in
an isothermic system near the critical point,

For a phase transition of the first kind totake place
at a finite rate it is necessary to change the conditions
for phase equilibrium, for example, to change the
pressure while we hold the temperature constant or
to maintain a certain temperature difference between
phases. However, this situation is often not apparent
because heat transfer and hydrodynamic or diffusion
processes associated with phase transition predomi-
nate.

It has long been known [1] that at low temperatures
the relationship between the evaporation rate and the
pressure difference pg — p is given by

{

i=a@umkl) 7 (p,—p). (1)

In this case, the evaporation rate is low because of
low vapor density, and heat transfer is not a limiting
factor. Retardation of phase transition near the critical
point is due to some other factor. Here the evapora-
tion rate drops because the difference between coexist-
ing phases becomes negligible.

S. L. Rivkin et al. [2, 3] observed the protracted
change (up to 8~10 hours) in water pressure in a two-
phase region under isothermal conditions when Tgp —

— T =~ 1-2° C. If we do not expect equilibrium to be
established, the condensation lines on the p- and v-
diagrams will be inclined. The authors of [3] notethat
this slope is not caused by impurities.

Consider a one-component isolated system con-
sisting of twa isotropic coexisting phases. In the gen-
eral case, we consider that the phase temperatures
and pressures differ and are not equal to their values
in an equilibrium system. We assume that internal
equilibrium in the phases is established much more
rapidly than equilibrium betweenphases, i.e., aquasi-
steady state exists for the discontinuous system. We
apply the fundamental equation of thermodynamics to
each phase:

TdS = dU + pdV — pwdM. (2)

With (2) and the conditions that the mass, volume, and
internal energy of the entire system be constant, we
find the rate of increase in entropy by a direct method:
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Therefore, the mass and energy flows have the form
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